skip to main content


Search for: All records

Creators/Authors contains: "Scordato, Elizabeth S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Huang, Jen-Pan ; Zelditch, Miriam (Ed.)
    The causes of population divergence in vagile groups remain a paradox in evolutionary biology: dispersive species should be able to colonize new areas, a prerequisite for allopatric speciation, but dispersal also facilitates gene flow, which erodes population differentiation. Strong dispersal ability has been suggested to enhance divergence in patchy habitats and inhibit divergence in continuous landscapes, but empirical support for this hypothesis is lacking. Here we compared patterns of population divergence in a dispersive clade of swallows distributed across both patchy and continuous habitats. The Pacific Swallow (Hirundo tahitica) has an insular distribution throughout Southeast Asia and the Pacific, while its sister species, the Welcome Swallow (H. neoxena), has a continental distribution in Australia. We used whole-genome data to demonstrate strong genetic structure and limited introgression among insular populations, but not among continental populations. Demographic models show that historic changes in habitat connectivity have contributed to population structure within the clade. Swallows appear to exhibit evolutionarily labile dispersal behavior in which they reduce dispersal propensity after island colonization despite retaining strong flight ability. Our data support the hypothesis that fragmented habitats enhance population differentiation in vagile groups, and suggest that labile dispersal behavior is a key mechanism underlying this pattern. 
    more » « less
    Free, publicly-accessible full text available October 6, 2024
  2. null (Ed.)
  3. Abstract

    Urbanization implies a dramatic impact on ecosystems, which may lead to drastic phenotypic differences between urban and nonurban individuals. For instance, urbanization is associated with increased metabolic costs, which may constrain body size, but urbanization also leads to habitat fragmentation, which may favor increases in body mass when for instance it correlates with dispersal capacity. However, this apparent contradiction has rarely been studied. This is particularly evident in China where the urbanization process is currently occurring at an unprecedented scale. Moreover, no study has addressed this issue across large geographical areas encompassing locations in different climates. In this regard, Barn Swallows (Hirundo rustica) are a suitable model to study the impact of urbanization on wild animals because they are a widely distributed species tightly associated with humans. Here, we collected body mass and wing length data for 359 breeding individuals of Barn Swallow (H. r. gutturalis) from 128 sites showing different levels of urbanization around the whole China. Using a set of linear mixed‐effects models, we assessed how urbanization and geography influenced body size measured using body mass, wing length, and their regression residuals. Interestingly, we found that the impact of urbanization was sex‐dependent, negatively affecting males’ body mass, its regression residuals, and females’ wing length. We also found that northern and western individuals were larger, regarding both body mass and wing length, than southern and eastern individuals. Females were heavier than males, yet males had slightly longer wings than females. Overall, our results showed that body mass of males was particularly sensitive trait to urbanization, latitude, and longitude, while it only showed a weak response to latitude in females. Conversely, while wing length showed a similar geographical pattern, it was only affected by urbanization in the case of females. Further research is needed to determine whether these phenotypic differences are associated with negative effects of urbanization or potential selective advantages.

     
    more » « less
  4. Abstract

    Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between thealbaandpersonatasubspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437SNPloci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome‐wide divergence. Variation in only one trait—head plumage patterning—was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome‐wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution.

     
    more » « less
  5. Abstract

    Hybrid zones are geographic regions where isolating barriers between divergent populations are challenged by admixture. Identifying factors that facilitate or inhibit hybridization in sympatry can illuminate the processes that maintain those reproductive barriers. We analysed patterns of hybridization and phenotypic variation across two newly discovered hybrid zones between three subspecies of barn swallow (Hirundo rustica). These subspecies differ in ventral coloration and wing length, traits that are targets of sexual and natural selection, respectively, and are associated with genome‐wide differentiation in allopatry. We tested the hypothesis that the degree of divergence in these traits is associated with the extent of hybridization in secondary contact. We applied measures of population structure based on >23,000SNPs to confirm that named subspecies correspond to distinct genomic clusters, and assessed coincidence between geographic clines for ancestry and phenotype. Although gene flow was ongoing across both hybrid zones and pairwiseFSTbetween subspecies was extremely low, we found striking differences in the extent of hybridization. In the more phenotypically differentiated subspecies pair, clines for ancestry, wing length and ventral coloration were steep and coincident, suggestive of strong isolation and, potentially, selection associated with phenotype. In the less phenotypically differentiated pair, gene flow and phenotypic variation occurred over a wide geographic span, indicative of weaker isolation. Traits associated with genome‐wide differentiation in allopatry may thus also contribute to isolation in sympatry. We discuss potentially important additional roles for evolutionary history and ecology in shaping variation in the extent hybridization between closely related pairs of subspecies.

     
    more » « less
  6. Abstract

    Migratory divides are proposed to be catalysts for speciation across a diversity of taxa. However, it is difficult to test the relative contributions of migratory behaviour vs. other divergent traits to reproductive isolation. Comparing hybrid zones with and without migratory divides offers a rare opportunity to directly examine the contribution of divergent migratory behaviour to reproductive barriers. We show that across replicate sampling transects of two pairs of barn swallow (Hirundo rustica) subspecies, strong reproductive isolation coincided with a migratory divide spanning 20 degrees of latitude. A third subspecies pair exhibited no evidence for a migratory divide and hybridised extensively. Within migratory divides, overwintering habitats were associated with assortative mating, implicating a central contribution of divergent migratory behaviour to reproductive barriers. The remarkable geographic coincidence between migratory divides and genetic breaks supports a long‐standing hypothesis that the Tibetan Plateau is a substantial barrier contributing to the diversity of Siberian avifauna.

     
    more » « less